Completing Square

Formula:

\((x + y)^2 = x^2 + 2 \:.\: x \:.\: y + y^2\)

\((x - y)^2 = x^2 - 2 \:.\: x \:.\: y + y^2\)

Example 01

Convert \(x^2 + 6x + 7\) to the form of \((x + p)^2 + q\)

\begin{equation*} \begin{split} & x^2 + 6x + 7 \\\\ & x^2 + 2 \:.\: 3 \:.\: x + 3^2 - 3^2 + 7 \\\\ & {\color {blue} \text{Form } x^2 + 2 \:.\: 3 \:.\: x + 3^2 = (x + 3)^2} \\\\ & (x + 3)^2 - 3^2 + 7 \\\\ & (x + 3)^2 - 9 + 7 \\\\ & (x + 3)^2 - 2 \end{split} \end{equation*}


Example 02

Convert \(x^2 - 8x + 20\) to the form of \((x + p)^2 + q\)

\begin{equation*} \begin{split} & x^2 - 8x + 20 \\\\ & x^2 - 2 \:.\: 4 \:.\: x + 4^2 - 4^2 + 20 \\\\ & {\color {blue} \text{Form } x^2 - 2 \:.\: 4 \:.\: x + 4^2 = (x - 4)^2} \\\\ & (x - 4)^2 - 4^2 + 20 \\\\ & (x - 4)^2 - 16 + 20 \\\\ & (x - 4)^2 + 4 \end{split} \end{equation*}

 

Exercise

--- Member Area ---

Please login to get access to the quiz
(Next Lesson) Discriminant