Basic Trigonometry
1. Right Angle Triangle

Rendered by QuickLaTeX.com

 

\(\sin \alpha = \dfrac yr = \dfrac {\text{opposite}}{\text{hypotenuse}}\)

\(\cos \alpha = \dfrac xr = \dfrac {\text{adjacent}}{\text{hypotenuse}}\)

\(\tan \alpha = \dfrac yx = \dfrac {\text{opposite}}{\text{adjacent}}\)

 

 

\(\sec \alpha = \dfrac {1}{\cos \alpha} \)

\(\csc \alpha = \dfrac {1}{\sin \alpha} \)

\(\cot \alpha = \dfrac {1}{\tan \alpha} \)


2. Special Angles
\(0\) \(30^{\text{o}}\) \(45^{\text{o}}\) \(60^{\text{o}}\) \(90^{\text{o}}\)
Sin 0 \(\dfrac{1}{2}\) \(\dfrac{1}{2}\sqrt{2}\) \(\dfrac{1}{2}\sqrt{3}\) 1
Cos 1 \(\dfrac{1}{2}\sqrt{3}\) \(\dfrac{1}{2}\sqrt{2}\) \(\dfrac{1}{2}\) 0
Tan 0 \(\dfrac{1}{3} \sqrt{3}\) 1 \(\sqrt{3}\)

Example 01

Given a right angle triangle below:

Rendered by QuickLaTeX.com

Determine the value of \(\sin \alpha\), \(\cos \alpha\) and \(\tan \alpha\)

 

Find the value of \(r\)

\begin{equation*} \begin{split} x^2 + 5^2 & = r^2 \\\\ 3^2 + 4^2 & = r^2 \\\\ 9 + 16  & = r^2 \\\\ 25 & = r^2 \\\\ r & = \pm 5 \end{split} \end{equation*}

Use positive value, \(r = 5\)

\begin{equation*} \sin \alpha = \dfrac {\text{opposite}}{\text{hypotenuse}} = \bbox[5px, border: 2px solid magenta] {\frac {4}{5}} \end{equation*}

 

\begin{equation*} \cos \alpha = \dfrac {\text{adjacent}}{\text{hypotenuse}} = \bbox[5px, border: 2px solid magenta] {\frac {3}{5}} \end{equation*}

 

\begin{equation*} \tan \alpha = \dfrac {\text{opposite}}{\text{adjacent}} = \bbox[5px, border: 2px solid magenta] {\frac {4}{3}} \end{equation*}


Example 02

A right angle triangle ABC, given that \(\sin A = \dfrac {5}{13}\).

Determine the value of \(\cos A\) and \(\tan A\)

 

\(\sin A = \dfrac {\text{opposite}}{\text{hypotenuse}} = \dfrac {5}{13}\)

 

Rendered by QuickLaTeX.com

Find the value of \(x\)

\begin{equation*} \begin{split} x^2 + 5^2 & = 13^2 \\\\ x^2 + 25 & = 169 \\\\ x^2  & = 144 \\\\ x & = \pm 12 \end{split} \end{equation*}

Use positive value, \(x = 12\)

 

\(\cos A = \dfrac xr = \dfrac {\text{adjacent}}{\text{hypotenuse}} = \bbox[5px, border: 2px solid magenta] {\dfrac {12}{13}}\)

\(\tan A = \dfrac yx = \dfrac {\text{opposite}}{\text{adjacent}} = \bbox[5px, border: 2px solid magenta] {\dfrac {5}{12}}\)

Exercise

--- Open this page ---

(Next Lesson) Related Angles