Related Angles

1. Quadrant

Rendered by QuickLaTeX.com


2. Use of 90º, 180º, 270º and 360º

 

90º and 270º 180º and 360º
\(\sin (90 - \alpha) = \cos \alpha\) \(\sin (90 + \alpha) = \cos \alpha\) \(\sin (180 - \alpha) = \sin \alpha\) \(\sin (180 + \alpha) = - \sin \alpha\)
\(\sin (270 - \alpha) = -\cos \alpha\) \(\sin (270 + \alpha) = -\cos \alpha\) \(\sin (360 - \alpha) = - \sin \alpha\) \(\sin (360 + \alpha) = \sin \alpha\)
\(\cos (90 - \alpha) = \sin \alpha\) \(\cos (90 + \alpha) = - \sin \alpha\) \(\cos (180 - \alpha) = - \cos \alpha\) \(\cos (180 + \alpha) = - \cos \alpha\)
\(\cos (270 - \alpha) = - \sin \alpha\) \(\cos (270 + \alpha) = \sin \alpha\) \(\cos (360 - \alpha) = \cos \alpha\) \(\cos (360 + \alpha) = \cos \alpha\)
\(\tan (90 - \alpha) = \cot \alpha\) \(\tan (90 + \alpha) = - \cot \alpha\) \(\tan (180 - \alpha) = - \tan \alpha\) \(\tan (180 + \alpha) = \tan \alpha\)
\(\tan (270 - \alpha) = \cot \alpha\) \(\tan (270 + \alpha) = - \cot \alpha\) \(\tan (360 - \alpha) = - \tan \alpha\) \(\tan (360 + \alpha) = \tan \alpha\)

3. Bigger Angles

For bigger angles, we must find the remainder angles after multiplication of 360°.

Example

\begin{equation*} \begin{split} \sin 1470^{\text{o}} & = \sin (360^{\text{o}} \:.\: 4 + 30^{\text{o}}) \\\\ \sin 1470^{\text{o}} & = \sin 30^{\text{o}} \\\\ \sin 1470^{\text{o}} & = \frac{1}{2} \end{split} \end{equation*}


4. Negative Angles

Negative angles can be assumed that the angle is on the 4th quadrant.

\(\sin (- \alpha) = - \sin \alpha\)

\(\cos (- \alpha) = \cos \alpha \)

\(\tan (- \alpha) = - \tan \alpha \)

 

Exercise

--- Open this page ---

Basic Trigonometry (Prev Lesson)
(Next Lesson) Graph of trigonometric functions