Integration Basic ConceptVideo Integral∫xndx=1n+1.xn+1+c ∫(ax+b)ndx=1a.1n+1.xn+1+c ∫kdx=kx+c, k is a constant Example 01 ∫x4dx=14+1.x4+1+c∫x4dx=15x5+c Example 02 ∫3x8dx=3.18+1.x8+1+c∫3x8dx=13x9+c Example 03 ∫xdx=∫x12dx∫xdx=112+1.x12+1+c∫xdx=132.x12+1+c∫xdx=23x112+c∫xdx=23xx+c Example 04 ∫1x3dx=∫x−3dx∫1x3dx=1−3+1.x−3+1+c∫1x3dx=−12x−2+c∫1x3dx=−12x2+c Example 05 ∫(2x−10)3dx12.13+1.(2x−10)3+1+c18(2x−10)4+c Example 06 ∫dx(4x−1)3∫(4x−1)−3dx14.1−3+1.(4x−1)−3+1+c−18(4x−1)−2+c−18.(4x−1)2+c Example 07 ∫4dx=4x+c Exercise --- Open this page --- (Next Lesson) Substitution