Geometric Progression

\(a, \: ar, \: ar^2, \: ar^3, \: \dotso \)

 

\(T_n = a \:.\: r^{n-1}\)

\( r = \dfrac{T_n}{T_{n - 1}} \)

\(S_n = \dfrac{a \:.\: (r^n - 1)}{r - 1}\)

 

Sum to Infinity

Geometric divergen

Example: \(3 + 6 + 12 + 24 + \dotso\)

\begin{equation*} \begin{split} | r | & \geq 1 \\\\ S_{\infty} & = \infty \end{split} \end{equation*}

Geometric convergen

Example: \(4 + 2 + 1 + \frac 12 + \dotso\)

\begin{equation*} \begin{split} | r | & < 1 \\\\ S_{\infty} & = \frac{a}{1 - r} \end{split} \end{equation*}

 

Exercise

--- Open this page ---

Please login to get access to the quiz
Arithmetic progression (Prev Lesson)