Absolute Value
A. Absolute value

Absolute value of a number represented by \(| \: x \: | = a\), where \(a\):

    • cannot be negative
    • only has positive value or 0

Example 01

(A)   \(| 0 | =  0\)

(B)   \(| 5 | =  5\)

(C)   \(|{\color {blue} -5 }| = 5\)


B. Equation related absolute value

\(|x| = a \text{ for } a \geq 0\)

 

Method 1

\( |x| = a \)

\( x = -a \text{ atau } x = +a \)

Method 2

\( |x| = a \)

\( x^2  = a^2 \)

\( x^2 - a^2  = 0  \)

\( (x + a)(x - a)  = 0  \)

\(x = -a  \text{ atau } x = +a \)

 

Example 02

Find the value of \(x\) where \(| x | = 3\)

 

Method 1

\( | x | = 3 \)

\( x = -3 \text{ atau } x = 3 \)

Method 2

\( | x | = 3 \)

\( x^2  = 3^2 \)

\( x^2 - 3^2  = 0  \)

\( (x + 3)(x - 3)  = 0  \)

\( x = -3  \text{ atau } x = 3 \)


C. Inequalities related absolute value
\(|x| < a \), for \(a > 0\)
Method 1

\(  -a < x < a \)


Example

\( |x| < 5 \)

\(  -5 < x < 5 \)

Method 2

\( x^2 < a^2 \)


Example

\( |x| < 5 \)

\( x^2 < 5^2 \)

\( x^2 - 5^2 < 0 \)

\( (x + 5)(x - 5) < 0 \)

\(|x| > a \), for \(a > 0\)
Method 1

\( x < -a \) atau \( x > a \)


Example

\( |x| > 5 \)

\( x < -5 \) or \(x > 5 \)

Method 2

\( x^2 > a^2 \)


Example

\( |x| > 5 \)

\( x^2 > 5^2 \)

\( x^2 - 5^2 > 0 \)

\( (x + 5)(x - 5) > 0 \)

Exercise

--- Membership Area ---

(Next Lesson) Remainder and Factor Theorem