Uniform Acceleration
Characteristics of Uniform Acceleration
  • Value of velocity changes in time linearly
  • Acceleration ≠ 0, it can be positive (accelerated) or negative (decelerated)

 

Formula

\begin{equation*} \begin{array} {lll} & s = v_\text{o} \:.\: t + \frac{1}{2} \:.\: a \:.\: t^2 \quad & (1) \\\\ & v_\text{t} = v_\text{o} + a \:.\: t \quad & (2) \\\\ & v_\text{t}^2 = v_\text{o}^2 + 2 \:.\: a \:.\: s \quad & (3) \end{array} \end{equation*}

  • \(s\) = distance (m)
  • \(v_{\text{o}}\) = initial velocity (m/s)
  • \(v_{\text{t}}\) = final velocity (m/s)
  • \(a\) = acceleration (m/s2)
    • Accelerated \(a = (+)\)
    • Decelerated \(a= (-)\)
  • \(t\) = waktu (s)

 

Graph

s vs t

Rendered by QuickLaTeX.com

v vs t

Rendered by QuickLaTeX.com

\(s\) = area under curve

\(a = \tan \alpha\)

a vs t

Rendered by QuickLaTeX.com

Exercise

--- Open this page ---

Uniform Velocity (Prev Lesson)
(Next Lesson) Vertical Motion