BENTUK EKSPONEN
Bentuk eksponen dapat disederhanakan dengan menggunakan aturan eksponen di bawah ini:
| Aturan | Contoh |
|---|---|
| \(\large x^a \:.\: x^b = x^{a + b}\) |
\(\large x^5 \:.\: x^2 = x^{5 + 2} = x^7\)
|
| \(\large \dfrac{x^a}{x^b} = x^{a - b}\) |
\(\large \dfrac {x^5}{x^2} = x^{5 - 2} = x^3\)
|
| \(\large (x^a)^b = x^{a \:.\: b}\) |
\(\large \left(x^5\right)^2 = x^{5 \:.\: 2} = x^{10}\)
|
| \(\large x^a \:.\: y^a = (x \:.\: y)^a\) |
\(\large x^3 \:.\: y^3 = (x \:.\: y)^3\)
|
| \(\large \dfrac {x^a}{y^a} = \left(\dfrac xy \right)^a \) |
\(\large \dfrac {x^3}{y^3} = \left(\dfrac xy \right)^3 \)
|
| \(\large x^{-a} = \dfrac {1}{x^a}\) |
\(\large x^{-5} = \dfrac {1}{x^5}\)
|
| \(\large \left (\dfrac xy \right)^{-a} = \left (\dfrac yx \right)^a\) |
\(\large \left (\dfrac xy \right)^{-3} = \left (\dfrac yx \right)^3\)
|
| \(\large x^{\frac ab} = \sqrt [b] {x^a}\) |
\(\large x^{\frac 12} = \sqrt {x}\)
\(\large x^{\frac 25} = \sqrt [5] {x^2}\)
|
BENTUK EKSPONEN DAN AKAR
Konsep Dasar Latihan Soal 01 02 03 04 05 06 07 08 09 10 11 12
A. Bentuk Eksponen B. Bentuk Akar C. Persamaan Eksponen Sederhana D. Persiapan Ulangan 12 3 E. Download Ringkasan Kembali ke Modul SMA