CSCA Math Sample Test

SAMPLE TEST

QUESTION 01

The inverse function of \(y = 3x - 2\) is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(y = \dfrac {x + 3}{2}\)

(B) \(y = \dfrac {x - 3}{2}\)

(C) \(y = \dfrac {x - 2}{3}\)

(D) \(y = \dfrac {x + 2}{3}\)

 


QUESTION 02

The solution set of the inequality \(\dfrac {x - 3}{x + 1} \geq 0\) is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \((- \sim, -1] \cup [3, + \sim) \)

(B) \((- \sim, -1) \cup [3, + \sim) \)

(C) \((- \sim, -3] \cup [1, + \sim) \)

(D) \((- \sim, -3] \cup (1, + \sim) \)

 


QUESTION 03

The distance from a point P(−1,2) to another point Q(2,3) is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(3\)

(B) \(4\)

(C) \(\sqrt{26}\)

(D) \(\sqrt{10}\)

 


QUESTION 04

If \(a < b, \: c < d\), which of the following is correct ? \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(a^2 < b^2 \)

(B) \(a - c < b - d\)

(C) \(ac < bd \)

(D) \(c^3 < d^3 \)

 


QUESTION 05

If \(\cos \alpha = - \dfrac 14\), then \(\cos 2 \alpha = \bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(- \dfrac 78\)

(B) \(- \dfrac {3}{16}\)

(C) \(- \dfrac 12\)

(D) \( \dfrac 34\)

 


QUESTION 06

The foci of the hyperbola \(\dfrac {x^2}{4} - \dfrac {y^2}{5} = 1\) have coordinates \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \((0, \pm 3 )\)

(B) \((\pm 3, 0 )\)

(C) \((0, \pm 1 )\)

(D) \((\pm 1, 0 )\)

 


QUESTION 07

If the sum of the first \(n\) terms of the sequence \(\{a_n\}\) is given by \(S_n = n^2 + 1\), then \(a_{10} = \bbox[10px, border: 2px solid red]{(\: \dotso \: )}\).

(A) 18

(B) 19

(C) 20

(D) 21

 


QUESTION 08

Which of the following lines is parallel to \(3x - y + 1 = 0\). \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(x - 3y + 2 = 0 \)

(B) \(x + 3y - 2 = 0 \)

(C) \(6x - 2y - 3 = 0 \)

(D) \(6x + 2y + 1 = 0 \)

 


QUESTION 09

If \(\cos \alpha = - \dfrac 12, \pi < \alpha < \dfrac {3 \pi}{2}\), then \(\sin \dfrac {\alpha}{2} = \bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(\dfrac {\sqrt{3}}{2} \)

(B) \(- \dfrac {\sqrt{3}}{2} \)

(C) \(\pm \dfrac {\sqrt{3}}{2} \)

(D) \(\dfrac 12 \)

 


QUESTION 10

The domain of the function \(y = 5 \tan \left( x - \dfrac {\pi}{4} \right)\) is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(\left \{ x | x \neq k \pi + \dfrac {3 \pi}{4}, k \in Z \right \}\)

(B) \(\left \{ x | x \neq k \pi + \dfrac {\pi}{4}, k \in Z \right \} \)

(C) \(\left \{ x | x \neq 2k \pi + \dfrac {3 \pi}{4}, k \in Z \right \} \)

(D) \(\left \{ x | x \neq 2k \pi + \dfrac {\pi}{4}, k \in Z \right \} \)

 


QUESTION 11

A sequence \(\{a_n\}\) has \(a_1 = 2, a_n = 1 + \dfrac {1}{a_{n - 1}} \: (n \geq 2)\). Then \(a_4 = \bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(\dfrac 32 \)

(B) \(\dfrac 53 \)

(C) \(\dfrac 85 \)

(D) \(\dfrac {13}{8} \)

 


QUESTION 12

The solution set of the inequality \(\log_2 (3 - x) < 0\) is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \((1, 3) \)

(B) \((-\sim, 3) \)

(C) \((2, +\sim) \)

(D) \((2, 3) \)

 


QUESTION 13

If a function satisfies \(f(2x + 1) = x - 3\), then \(f(-3) = \bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(-3 \)

(B) \(0 \)

(C) \(-6 \)

(D) \(-5 \)

 


QUESTION 14

Which of the following is correct? \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \((0.3)^{-2.1} > (0.2)^{-2.1} \)

(B) \((2.1)^{0.12} < (2.2)^{0.12} \)

(C) \((3.2)^{-1.1} > (3.2)^{-0.9} \)

(D) \((0.25)^{1.5} > (0.25)^{1.4} \)

 


QUESTION 15

Let \(\vec a = (-1,2), \vec b = (2,-1)\) be two vectors. Then \(2 \vec a + \vec b = \bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \((1,1) \)

(B) \((0,3) \)

(C) \(-4 \)

(D) \((-2,-2) \)

 


QUESTION 16

A bag contains five equal sized balls. Three of them are black and two of them are red. Two balls are drawn randomly from the bag. The probability that the balls have the same color is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(\dfrac 15 \)

(B) \(\dfrac 25 \)

(C) \(\dfrac 35 \)

(D) \(\dfrac 45 \)

 


QUESTION 17

Suppose that the center of an ellipse C is at the origin, and the foci are on the x -axis. Suppose also that it has a vertex at (0,1) , and an eccentricity of \(\dfrac {2 \sqrt{5}}{5}\). The equation of C is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(\dfrac {x^2}{20} + \dfrac {y^2}{4} = 1\)

(B) \(\dfrac {x^2}{4} + \dfrac {y^2}{20} = 1 \)

(C) \(x^2 + \dfrac {y^2}{5} = 1 \)

(D) \(\dfrac {x^2}{5} + y^2 = 1 \)

 


QUESTION 18

Suppose that a complex number \(z\) satisfies \((1 - i)^2 z = 3 + 2i\), where \(i\) is the unit imaginary number. Then \(z = \bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(- \dfrac 32 + i \)

(B) \(- \dfrac 32 - i \)

(C) \(-1 - \dfrac 32 i \)

(D) \(-1 + \dfrac 32 i \)

 


QUESTION 19

The maximum value of the function \(f(x) = 2x^3 - 3x^2 - 36x + 1\) over the interval \([-3,4]\) is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(-63 \)

(B) \(1 \)

(C) \(28 \)

(D) \(45 \)

 


QUESTION 20

The angle between the planes \(x - 2y + z - 1 = 0\) and \(2x + y - z + 3 = 0\) is \(\bbox[10px, border: 2px solid red]{(\: \dotso \: )}\)

(A) \(\dfrac {\pi}{3} \)

(B) \(\dfrac {2 \pi}{3} \)

(C) \(\arccos \dfrac 16 \)

(D) \(\pi - \arccos \dfrac 16 \)

 

CSCA MATHS

Questions and Solutions 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Back to modul