RINGKASAN
Aturan Eksponen | |
\(x^a \:.\: x^b = x^{a + b}\) | \(\dfrac{x^a}{x^b} = x^{a - b}\) |
\((x^a)^b = x^{a \:.\: b}\) |
\(x^{-a} = \dfrac {1}{x^a}\) |
\(x^{\frac ab} = \sqrt [b] {x^a}\) | |
Bentuk Sekawan | |
\((a + b)(a - b) = a^2 - b^2\) | \((\sqrt {a} + \sqrt{b})(\sqrt {a} - \sqrt{b}) = a - b\) |
\((a + b)(a^2 - ab + b^2) = a^3 + b^3\) | \((\sqrt [3] {a} + \sqrt [3] {b})(\sqrt [3] {a^2} - \sqrt [3] {ab} + \sqrt [3] {b^2}) = a + b\) |
\((a - b)(a^2 + ab + b^2) = a^3 - b^3\) | \((\sqrt [3] {a} - \sqrt [3] {b})(\sqrt [3] {a^2} + \sqrt [3] {ab} + \sqrt [3] {b^2}) = a - b\) |
Bentuk Akar di Dalam Akar | |
\(\sqrt{(a + b) + 2 \sqrt{ab}} = \sqrt{a} + \sqrt{b}\) | \(\sqrt{(a + b) - 2 \sqrt{ab}} = \sqrt{a} - \sqrt{b}\) |