Ringkasan

Ringkasan

 NO KETERANGAN PERSAMAAN 1 Simpangan $$y = A \sin (\omega t + \theta_o)$$ Simpangan maksimum $$y_{\text{max}} = A$$ Simpangan minimum $$y_{\text{min}} = 0$$ 2 Kecepatan getar $$v = \dfrac{dy}{dt}$$ $$v = \omega A \cos (\omega t + \theta_o)$$ $$v = \omega \sqrt{A^2 - y^2}$$ Kecepatan maksimum $$v = \omega \: A$$ Kecepatan minimum $$v = 0$$ 3 Percepatan getar $$a = \dfrac{dv}{dt} = \dfrac{d^2 y}{dy^2}$$ $$a = -\omega^2 A \sin (\omega t + \theta_o)$$ $$a = -\omega^2 \: y$$ Percepatan maksimum $$a = \omega^2 A$$ Percepatan minimum $$a = 0$$ 4 Fase Getaran $$\varphi = \dfrac{t}{T}$$ 5 Konstanta Getaran $$k = \omega^2 \:.\: m$$ 6 Energi potensial $$E_p = \frac{1}{2} \: k \: y^2$$ Energi potensial maksimum $$E_{\text{p max}} = \frac{1}{2} \: k \: A^2$$ Energi potensial minimum $$E_{\text{p min}} = 0$$ 7 Energi kinetik $$E_k = \frac{1}{2} \: m \: v^2$$ Energi kinetik maksimum $$E_{\text{k max}} = \frac{1}{2} \: m \: \omega^2 \: A^2$$ Energi kinetik minimum $$E_{\text{k min}} = 0$$ 8 Energi Mekanik $$E_M = E_p + E_k = \frac{1}{2} \: k \: A^2$$ 9 Bandul dan Pegas Bandul   $$T = 2 \pi \sqrt{\dfrac{l}{g}}$$          $$f = \dfrac{1}{2 \pi} \sqrt{\dfrac{g}{l}}$$ Pegas   $$T = 2 \pi \sqrt{\dfrac{m}{k}}$$          $$f = \dfrac{1}{2 \pi} \sqrt{\dfrac{k}{m}}$$ 10 Gaya Pemulih $$F = m \:.\: a$$