Binomial Expansion
Pascal's Triangle

Rendered by QuickLaTeX.com

 

Rows of Pascal's triangle provide the coefficients to expand (a+b)n. Coefficients for (a+b)n can read from the (n+1)st row of Pascal's triangle.

For example,

  • (a+b)2=a2+2ab+b2  from the row 1, 2, 1
  • (a+b)3=a3+3a2b+3ab2+b3  from the row 1, 3, 3, 1
  • (a+b)4=a4+4a3b+6a2b2+4ab3+b4  from the row 1, 4, 6, 4, 1
  • (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5  from the row 1, 5, 10, 10, 5, 1
  • (a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6  from the row 1, 6, 15, 20, 15, 6, 1

Example 1

Expand (2x+3)3

Let a=2x and b=3

Then,

(2x+3)3=(a+b)3=a3+3a2b+3ab2+b3(2x+3)3=(2x)3+3(2x)2(3)+3(2x)(3)2+33(2x+3)3=8x3+3(4x2)(3)+3(2x)(9)+27(2x+3)3=8x3+36x2+54x+27

 

 

Example 2

Expand (3m5)5

Let a=3m and b=5

Then,

(3m5)5=(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5(3m5)5=(3m)5+5(3m)4(5)+10(3m)3(5)2+10(3m)2(5)3+5(3m)(5)4+(5)5(3m5)5=243m5+5(81m4)(5)+10(27m3)(25)+10(9m2)(125)+5(3m)(625)3125(3m5)5=243m52025m4+6750m311250m2+9375m3125

Exercise

--- Open this page ---

Quadratic Expansion (Prev Lesson)
(Next Lesson) Quadratic Difference Factorization