Equation of Degree 3

 

Polynomial ax3+bx2+cx+d=0 has roots x1, x2 and x3, then:

 

x1+x2+x3=ba

x1.x2+x1.x3+x2.x3=ca

x1.x2.x3=da

 

Attention to sign (−) alternating

a = (+), b = (−), c = (+), d = (−)

 

Example 01

Given an equation x3+5x2+8x4=0 has roots x1, x2 and x3.

Determine:

(A)   x1+x2+x3

(B)   x1.x2+x1.x3+x2.x3

(C)   x1.x2.x3

 

x3+5x2+8x4=0

a=1,b=5,c=8,d=4

 

x1+x2+x3=ba

x1+x2+x3=51

x1+x2+x3=5

x1.x2+x1.x3+x2.x3=ca

x1.x2+x1.x3+x2.x3=81

x1.x2+x1.x3+x2.x3=8

x1.x2.x3=da

x1.x2.x3=41

x1.x2.x3=4


Equation of Degree 4

 

Polynomial ax4+bx3+cx2+dx+e=0 has roots x1, x2, x3 andx4, then:

 

x1+x2+x3+x4=ba

x1.x2+x1.x3+x1.x4+x2.x3+x2.x4+x3.x4=ca

 

x1.x2.x3+x1.x2.x4+x2.x3.x4=da

x1.x2.x3.x4=ea

 

Attention to sign (−) alternating

a = (+), b = (−), c = (+), d = (−), e = (+)

 

Example 02

Given an equation x42x36x27x9=0 has roots x1, x2, x3 and x4.

Determine:

(A)   x1+x2+x3+x4

(B)   x1.x2+x1.x3+x1.x4+x2.x3+x2.x4+x3.x4

(C)   x1.x2.x3+x1.x2.x4+x2.x3.x4

(D)   x1.x2.x3.x4

 

x42x36x27x9=0

a=1,b=2,c=6,d=7,e=9

 

x1+x2+x3+x4=ba

x1+x2+x3+x4=21

x1+x2+x3+x4=2

x1.x2+x1.x3+x1.x4+x2.x3+x2.x4+x3.x4=ca

x1.x2+x1.x3+x1.x4+x2.x3+x2.x4+x3.x4=61

x1.x2+x1.x3+x1.x4+x2.x3+x2.x4+x3.x4=6

 

 

x1.x2.x3+x1.x2.x4+x2.x3.x4=da

x1.x2.x3+x1.x2.x4+x2.x3.x4=71

x1.x2.x3+x1.x2.x4+x2.x3.x4=7

x1.x2.x3.x4=ea

x1.x2.x3.x4=91

x1.x2.x3.x4=9

Exercise

--- Open this page ---

(Next Lesson) Form new equation