Equation of Degree 3

 

Polynomial \(ax^3 + bx^2 + cx + d = 0\) has roots \(x_1\), \(x_2\) and \(x_3\), then:

 

\(x_1 + x_2 + x_3 = - \dfrac ba\)

\(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_2 \:.\: x_3 = \dfrac ca\)

\(x_1 \:.\: x_2 \:.\: x_3 = - \dfrac da\)

 

Attention to sign (−) alternating

a = (+), b = (−), c = (+), d = (−)

 

Example 01

Given an equation \(x^3 + 5x^2 + 8x - 4 = 0\) has roots \(x_1\), \(x_2\) and \(x_3\).

Determine:

(A)   \(x_1 + x_2 + x_3\)

(B)   \(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_2 \:.\: x_3\)

(C)   \(x_1 \:.\: x_2 \:.\: x_3\)

 

\(x^3 + 5x^2 + 8x - 4 = 0\)

\(a = 1, b = 5, c = 8, d = -4\)

 

\(x_1 + x_2 + x_3 = - \dfrac ba\)

\(x_1 + x_2 + x_3 = - \dfrac 51\)

\(x_1 + x_2 + x_3 = \bbox[5px, border: 2px solid magenta] {- 5}\)

\(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_2 \:.\: x_3 = \dfrac ca\)

\(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_2 \:.\: x_3 = \dfrac 81\)

\(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_2 \:.\: x_3 = \bbox[5px, border: 2px solid magenta] {8}\)

\(x_1 \:.\: x_2 \:.\: x_3 = - \dfrac da\)

\(x_1 \:.\: x_2 \:.\: x_3 = - \dfrac {-4}{1}\)

\(x_1 \:.\: x_2 \:.\: x_3 = \bbox[5px, border: 2px solid magenta] {4}\)


Equation of Degree 4

 

Polynomial \(ax^4 + bx^3 + cx^2 + dx + e = 0\) has roots \(x_1\), \(x_2\), \(x_3\) and\(x_4\), then:

 

\(x_1 + x_2 + x_3 + x_4 = - \dfrac ba\)

\(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_1 \:.\: x_4 + x_2 \:.\: x_3 + x_2 \:.\: x_4 + x_3 \:.\: x_4 = \dfrac ca\)

 

\(x_1 \:.\: x_2 \:.\: x_3 + x_1 \:.\: x_2 \:.\: x_4 + x_2 \:.\: x_3 \:.\: x_4 = - \dfrac da\)

\(x_1 \:.\: x_2 \:.\: x_3 \:.\: x_4 = \dfrac ea\)

 

Attention to sign (−) alternating

a = (+), b = (−), c = (+), d = (−), e = (+)

 

Example 02

Given an equation \(x^4 - 2x^3 - 6x^2 - 7x - 9 = 0\) has roots \(x_1\), \(x_2\), \(x_3\) and \(x_4\).

Determine:

(A)   \(x_1 + x_2 + x_3 + x_4\)

(B)   \(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_1 \:.\: x_4 + x_2 \:.\: x_3 + x_2 \:.\: x_4 + x_3 \:.\: x_4\)

(C)   \(x_1 \:.\: x_2 \:.\: x_3 + x_1 \:.\: x_2 \:.\: x_4 + x_2 \:.\: x_3 \:.\: x_4\)

(D)   \(x_1 \:.\: x_2 \:.\: x_3 \:.\: x_4 \)

 

\(x^4 - 2x^3 - 6x^2 - 7x - 9 = 0\)

\(a = 1, b = -2, c = -6, d = -7, e = -9\)

 

\(x_1 + x_2 + x_3 + x_4 = - \dfrac ba\)

\(x_1 + x_2 + x_3 + x_4 = - \dfrac {-2}{1}\)

\(x_1 + x_2 + x_3 + x_4 = \bbox[5px, border: 2px solid magenta] {2}\)

\(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_1 \:.\: x_4 + x_2 \:.\: x_3 + x_2 \:.\: x_4 + x_3 \:.\: x_4 = \dfrac ca\)

\(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_1 \:.\: x_4 + x_2 \:.\: x_3 + x_2 \:.\: x_4 + x_3 \:.\: x_4 = \dfrac {-6}{1}\)

\(x_1 \:.\: x_2 + x_1 \:.\: x_3 + x_1 \:.\: x_4 + x_2 \:.\: x_3 + x_2 \:.\: x_4 + x_3 \:.\: x_4 = \bbox[5px, border: 2px solid magenta] {-6}\)

 

 

\(x_1 \:.\: x_2 \:.\: x_3 + x_1 \:.\: x_2 \:.\: x_4 + x_2 \:.\: x_3 \:.\: x_4 = - \dfrac da\)

\(x_1 \:.\: x_2 \:.\: x_3 + x_1 \:.\: x_2 \:.\: x_4 + x_2 \:.\: x_3 \:.\: x_4 = - \dfrac {-7}{1}\)

\(x_1 \:.\: x_2 \:.\: x_3 + x_1 \:.\: x_2 \:.\: x_4 + x_2 \:.\: x_3 \:.\: x_4 = \bbox[5px, border: 2px solid magenta] {7}\)

\(x_1 \:.\: x_2 \:.\: x_3 \:.\: x_4 = \dfrac ea\)

\(x_1 \:.\: x_2 \:.\: x_3 \:.\: x_4 = \dfrac {-9}{1}\)

\(x_1 \:.\: x_2 \:.\: x_3 \:.\: x_4 = \bbox[5px, border: 2px solid magenta] {-9}\)

Exercise

--- Open this page ---

(Next Lesson) Form new equation