Maclaurin Series

Polynomial approximation for a function using Maclaurin's Theorem:

f(x)=f(0)+x.f(0)+x22!.f(0)+x33!.f(0)++xnn!.fn(0)

 

Example 01

Expand the function f(x)=sinx in ascending powers up to and including the term in x3

 

f(x)=cosx,f(x)=sinx,f(x)=cosxsinx=sin0+x.cos0+x22!.sin0+x33!.cos0sinx=0+x+016x3+sinx=x16x3+

 

Example 02

Expand the function f(x)=ex in ascending powers up to and including the term in x3

 

f(x)=ex,f(x)=ex,f(x)=exex=e0+x.e0+x22!.e0+x33!.e0+ex=1+x+12x2+16x3+

Exercise

--- Open this page ---

Differentiation