Basic Form

If y=axn then y=a.n.xn1

 

Example 01

y=2x7y=2.7.x71y=14.x6

Example 02

y=4xy=4.x1y=4.1.x11y=4.x0y=4

Example 03

y=5y=5.x0y=5.0.x01y=0


A function can be differentiated several times. Second derivative is differentiation of the first derivative.

Example 04

y=5x3y=5.3.x31(first derivative)y=15.x2y=15.2.x21(second derivative)y=30.x


Notations of Derivative

First derivative y dydx
Second derivative y d2ydx2
Chain Rule

dydx=dydu.dudx

 

Chain rule can be used to differentiate some functions with different parameter.


Example 05

Given that y(u)=u2+5u and u(x)=3x. Determine dydx

y(u)=u2+5udydu=2u+5

u(x)=3xdudx=3

 

dydx=dydu.dudxdydx=(2u+5).3dydx=6u+15dydx=6(3x)+15dydx=18x+15

Another use of chain rule is to differentiate some complex functions.

 

Example 06

Differentiate y=(3x+2)5

 

Method 1

Let u=3x+2, then y=u5

 

y=u5dydu=5.u4

u=3x+2dudx=3

 

dydx=dydu.dudxdydx=5.u4.3dydx=15.u4dydx=15.(3x+2)4

Method 2

y=(3x+2)5dydx=5.3.(3x+2)4dydx=15.(3x+2)4

Exercise

--- Open this page ---

(Next Lesson) Tangent and normal