Integration Basic ConceptVideo Substitution Method Example 01 ∫(2x−10)3dx Let: u=2x−10 dudx=2du=2dxdx=du2 ∫(x−2)3dx∫u3du212∫u3du12.14.u4+c18u4+c18(2x−10)4+c Example 02 ∫(2x+5)(x2+5x)6dx Let: u=x2+5x dudx=2x+5du=(2x+5)dxdx=du(2x+5) ∫(2x+5)(x2+5x)6dx∫(2x+5).u6du(2x+5)∫(2x+5).u6du(2x+5)∫u6du16+1.u6+1+c17u7+c17(x2+5x)7+c Example 03 ∫13+12xdx (3+12x) will be the new variable ∫13+12xdx∫13+12xd(3+12x)12→(3+12x) as variable→derivative of (3+12x)2∫13+12xd(3+12x)2ln(3+12x)+cln(3+12x)2+c Example 04 ∫18.(3x−2)5dx (3x−2) will be the new variable ∫18.(3x−2)5dx∫186.(3x−2)5d(3x−2)3→(3x−2) as variable→derivative of (3x−2)∫6.(3x−2)5d(3x−2)6.16.(3x−2)6+c(3x−2)6+c Example 05 ∫dx(4x−1)3 (4x−1) akan dijadikan sebagai variabel ∫dx(4x−1)3∫1(4x−1)3d(4x−1)4→(4x−1) as variable→derivative of (4x−1)14∫(4x−1)−3d(4x−1)14.1−3+1.(4x−1)−3+1+c14.1−2.(4x−1)−2+c−18.1(4x−1)2+c−18(4x−1)2+c Exercise --- Open this page --- Integral (Prev Lesson) (Next Lesson) Area