Turunan Trigonometri Sederhana
NO | FUNGSI | TURUNAN |
1 | \(y = \sin x\) | \(\dfrac{dy}{dx} = y' = \cos x\) |
2 | \(y = \cos x\) | \(\dfrac{dy}{dx} = y' = -\sin x\) |
3 | \(y = \sin (ax + b)\) | \(\dfrac{dy}{dx} = y' = a \:.\: \cos (ax + b)\) |
4 | \(y = \cos (ax + b)\) | \(\dfrac{dy}{dx} = y' = -a \:.\: \sin (ax + b)\) |
Contoh 1
\(y = \sin (4x + 5)\)
\(\dfrac{dy}{dx} = y' = 4 \:.\: \cos (4x + 5)\)
\(\dfrac{d^2y}{dx^2} = y'' = -4 \:.\: 4 \:.\: \sin (4x + 5) = -16 \:.\: \sin (4x + 5) \)
Contoh 2
\(y = \cos (3x + 1)\)
\(\dfrac{dy}{dx} = y' = -3 \:.\: \sin (3x + 1)\)
\(\dfrac{d^2y}{dx^2} = y'' = -3 \:.\: 3 \:.\: \cos (3x + 1) = -9 \:.\: \cos (3x + 1) \)
Contoh 3
\(y = 4 \sin (2t - 10)\)
\(\dfrac{dy}{dx} = y' = 4 \:.\: 2 \:.\: \cos (2t - 10) = 8 \:.\: \cos (2t - 10) \)
\(\dfrac{d^2y}{dx^2} = y'' = 8 \:.\: -2 \:.\: \sin (2t - 10) = -16 \:.\: \sin (2t - 10) \)
Contoh 4
\(y = 2 \cos (3t + 20)\)
\(\dfrac{dy}{dx} = y' = 2 \:.\: -3 \:.\: \sin (7t + 30) = -6 \:.\: \sin (3t + 20)\)
\(\dfrac{d^2y}{dx^2} = y'' = -6 \:.\: 3 \:.\: \cos (3t + 20) = -18 \:.\: \cos (3t + 20) \)