Integral Bentuk Dasar

Konsep Dasar

Rumus Dasar Integral

 

\(\int x^n \: dx = \dfrac {1}{n + 1} \:.\: x^{n + 1} + c\)

 

\(\int x^{-1} \: dx = \ln |x| + c\)

 

\(\int k \: dx = kx + c\), k adalah konstanta

 

Contoh 1

\begin{equation*}
\begin{split}
\int x^4 \: dx & = \frac {1}{4 + 1} \:.\: x^{4 + 1} + c \\\\
\int x^4 \: dx & = \tfrac {1}{5} x^{5} + c
\end{split}
\end{equation*}


Contoh 2

\begin{equation*}
\begin{split}
\int 3x^8 \: dx & = 3 \:.\: \frac {1}{8 + 1} \:.\: x^{8 + 1} + c \\\\
\int 3x^8 \: dx & = \tfrac {1}{3} x^{9} + c
\end{split}
\end{equation*}


Contoh 3

\begin{equation*}
\begin{split}
\int \sqrt{x} \: dx & = \int x^{\frac 12} \: dx \\\\
\int \sqrt{x} \: dx & = \frac {1}{\frac 12 + 1} \:.\: x^{\frac 12 + 1} + c \\\\
\int \sqrt{x} \: dx & = \tfrac {2}{3} x^{1 \frac 12} + c \\\\
\int \sqrt{x} \: dx & = \tfrac {2}{3} x \sqrt{x} + c \\\\
\end{split}
\end{equation*}


Contoh 4

\begin{equation*}
\begin{split}
\int \frac {1}{x^3} \: dx & = \int x^{-3} \: dx \\\\
\int \frac {1}{x^3} \: dx & = \frac {1}{-3 + 1} \:.\: x^{-3 + 1} + c \\\\
\int \frac {1}{x^3} \: dx & = -\tfrac {1}{2} x^{-2} + c
\end{split}
\end{equation*}


Contoh 5

\begin{equation*}
\begin{split}
\int \frac 2x \: dx & = 2 x^{-1} \: dx \\\\
\int \frac 2x \: dx & = 2 \ln |x| + c
\end{split}
\end{equation*}


Contoh 6

\begin{equation*}
\begin{split}
\int 4 \: dx & = 4x + c
\end{split}
\end{equation*}

(Next Lesson) Latihan Soal
Kembali ke Integral Bentuk Dasar