Jawab: E
Limit didekati dari sisi kiri
\begin{equation*}
\begin{split}
\lim_{x \rightarrow 0^-} \frac {1}{x} & = \lim_{x \rightarrow 0^-} \frac {1}{0^-} \\\\
\lim_{x \rightarrow 0^-} \frac {1}{x} & = - \sim
\end{split}
\end{equation*}
Limit didekati dari sisi kanan
\begin{equation*}
\begin{split}
\lim_{x \rightarrow 0^+} \frac {1}{x} & = \lim_{x \rightarrow 0^+} \frac {1}{0^+} \\\\
\lim_{x \rightarrow 0^+} \frac {1}{x} & = + \sim
\end{split}
\end{equation*}
Karena \(\displaystyle \lim_{x \rightarrow 0^-} \frac {1}{x} \neq \lim_{x \rightarrow 0^+} \frac {1}{x}\) maka \(\displaystyle \lim_{x \rightarrow 0} \: \frac {1}{x}\) tidak ada.