\begin{equation*}
\begin{split}
& \cos 3x = - \sin 2x \\\\
& \cos 3x = \cos (90 + 2x)
\end{split}
\end{equation*}
Solusi 1
\begin{equation*}
\begin{split}
3x & = 90^{\text{o}} + 2x + k \:.\: 360^{\text{o}} \\\\
x & = 90^{\text{o}} + k \:.\: 360^{\text{o}} \\\\
k & = 0 \rightarrow {\color {red} x = 90^{\text{o}}}
\end{split}
\end{equation*}
Solusi 2
\begin{equation*}
\begin{split}
3x & = - 90^{\text{o}} + 2x + k \:.\: 360^{\text{o}} \\\\
x & = - 90^{\text{o}} + k \:.\: 360^{\text{o}} \\\\
& \text{Tidak ada nilai k yang memenuhi}
\end{split}
\end{equation*}
HP = \(\{90^{\text{o}}\}\)