Turunan Fungsi Trigonometri

Konsep Dasar

RUMUS DASAR

F(x) F'(x)
\(\sin x\) \(\cos x\)
\(\cos x\) \(- \sin x\)
\(\tan x\) \(\sec^2 x\)
\(\cot x\) \(- \csc^2 x\)
\(\sec x\) \(\sec x \tan x\)
\(\csc x\) \(- \csc x \cot x\)

ATURAN BERANTAI

\(\dfrac {dy}{dx} = \dfrac {dy}{du} \:.\: \dfrac {du}{dx}\)

 

Contoh 01

Tentukan turunan pertama dari \(y = \sin \: (2x + 5)\).

\begin{equation*} \begin{split} & u =2x + 5 \\\\ & \frac {du}{dx} = 2 \\\\ \end{split} \end{equation*}

\begin{equation*} \begin{split} & y = \sin u \\\\ & \frac {dy}{dx} = \frac {dy}{du} \:.\: \frac {du}{dx} \\\\ & \frac {dy}{dx} = \cos u \:.\: 2 \\\\ & \frac {dy}{dx} = 2 \:.\: \cos \: (2x + 5) \end{split} \end{equation*}


Contoh 02

Tentukan turunan pertama dari \(y = \sin^3 x\).

\begin{equation*} \begin{split} & u =\sin x \\\\ & \frac {du}{dx} = \cos x \\\\ \end{split} \end{equation*}

\begin{equation*} \begin{split} & y = u^3 \\\\ & \frac {dy}{dx} = \frac {dy}{du} \:.\: \frac {du}{dx} \\\\ & \frac {dy}{dx} = 3u^2 \:.\: \cos x \\\\ & \frac {dy}{dx} = 3 \cos x \sin^2 x \end{split} \end{equation*}

(Next Lesson) Latihan Soal
Kembali ke Turunan Fungsi Trigonometri