Metode Komponen Vektor

Sebuah vektor dapat diurai menjadi dua vektor (komponen arah x dan komponen arah y)

 

Rendered by QuickLaTeX.com

\(\overrightarrow a_x = 4\) dan \(\overrightarrow a_y = 3\)

\(\overrightarrow a = 4 \: \overrightarrow i + 3 \: \overrightarrow j\)

 

 

Rendered by QuickLaTeX.com

\(\cos \theta = \dfrac {\overrightarrow {a_x}}{a} \rightarrow \overrightarrow {a_x} = \overrightarrow a \:.\: \cos \theta\)

\(\sin \theta = \dfrac {\overrightarrow {a_y}}{a} \rightarrow \overrightarrow {a_y} = \overrightarrow a \:.\: \sin \theta\)

Menentukan resultan dengan metode komponen vektor

Tentukan resultan dari tiga buah vektor di bawah ini:

 

Rendered by QuickLaTeX.com

 

 

Rendered by QuickLaTeX.com

Vektor Komponen arah X Komponen arah Y
\(\overrightarrow a\) \(\overrightarrow a_x = a \cos \alpha\) \(\overrightarrow a_y = a \sin \alpha\)
\(\overrightarrow b\) \(\overrightarrow b_x = -b \cos \beta\) \(\overrightarrow b_y = b \sin \beta\)
\(\overrightarrow c\) \(\overrightarrow c_x = -c \cos \gamma\) \(\overrightarrow c_y = -c \sin \gamma\)
\(\Sigma \overrightarrow X = \overrightarrow a_x + \overrightarrow b_x + \overrightarrow c_x\) \(\Sigma \overrightarrow Y = \overrightarrow a_y + \overrightarrow b_y + \overrightarrow c_y\)

\(|R| = \sqrt{(\Sigma \overrightarrow X)^2 + (\Sigma \overrightarrow Y)^2} \quad \tan \theta = \dfrac{\Sigma \overrightarrow Y}{\Sigma \overrightarrow X} \)

 

Catatan:

(tanda ditambahkan pada komponen \(\overrightarrow b_x, \: \overrightarrow c_x\) dan \(\overrightarrow c_y\) karena ke arah x negatif dan y negatif.

 

SOAL LATIHAN

--- Khusus Member ---

Metode jajaran genjang (Prev Lesson)
(Next Lesson) Persiapan ulangan 1