I. PART 1
QUESTION 01
Find the range of \(x\) that satisfies the following inequality \(| x + 3 | < 4x\). The answer is \(\bbox[10px, border: 2px solid red]{(1)}\)
QUESTION 02
The number of solutions \((x,y,z)\) of the equation \(x + y + z = 4\), where \(x\), \(y\) and \(z\) are zero or positive integers is \(\bbox[10px, border: 2px solid red]{(1)}\).
QUESTION 03
On the plane \(xy\), there are two points: \(0(0,0), A(6,8)\). The equation of the circle with a diameter of the line segment \(OA\) is \(\left( x - \bbox[10px, border: 2px solid red]{(1)} \right)^2 + \left( y - \bbox[10px, border: 2px solid red]{(2)} \right)^2 = \bbox[10px, border: 2px solid red]{(3)}\)
QUESTION 04
\(\log_4 9 = \log_2 \: \bbox[10px, border: 2px solid red]{(1)}\), \(\log_9 4 = \log_3 \: \bbox[10px, border: 2px solid red]{(2)}\), hence \(\left( \log_2 3 + \log_4 9 \right) \left( \log_3 2 + \log_9 4 \right) = \bbox[10px, border: 2px solid red]{(3)}\)
QUESTION 05
\(\sqrt [6] {25} \times \sqrt [3] {25} : \sqrt {5} = \bbox[10px, border: 2px solid red]{(1)}\)
QUESTION 06
Let the sequence \(a_n\) \(n = 1, 2, 3, \dotso\) be a geometric progression satisfying \(a_1 + a_2 + a_3 = 14\), \(a_2 + a_3 + a_4 = -42\). When we denote the first term of \(a_n\) by \(a\), and the common ratio by \(r\), we have \(a = \bbox[10px, border: 2px solid red]{(1)}\) and \(r = \bbox[10px, border: 2px solid red]{(2)}\).
QUESTION 07
Let \(\vec a = (1,0,-1), \vec b = (-2,2,1), \vec c = (x,y,z) \: x> 0\) and \(\| \vec c \| = 3\). When \(\vec c\) is perpendicular to both \(\vec a\) and \(\vec b\), then \(x = \bbox[10px, border: 2px solid red]{(1)}, y = \bbox[10px, border: 2px solid red]{(2)}, z = \bbox[10px, border: 2px solid red]{(3)}\)
QUESTION 08
Let M denote the midpoint of side BC of a triangle ABC.
When \(BC = 8, CA = 4, AB = 6\), then \(\cos ABC = \bbox[10px, border: 2px solid red]{(1)}, AM = \bbox[10px, border: 2px solid red]{(2)}\)
QUESTION 09
The equation of the tangent to the curve \(f(x) = -x^2 + x + 2\) at the point \((0,2)\) is \(y = \bbox[10px, border: 2px solid red]{(1)}\), and the area of the region bounded by the curve \(f(x)\), the tangent and the x axis is \(\bbox[10px, border: 2px solid red]{(2)}\).
II. PART 2
A triangle ABC on a plane satisfies \(AC = BC\) and \(\angle ACB = 90^{\text{o}}, DC = 1, \angle AHD = 90^{\text{o}}\) and \(\angle ADC = 60^{\text{o}}\).
QUESTION 01
(i) The radius of the circumscribed circle of \(\Delta ADC = \bbox[10px, border: 2px solid red]{(1)}\).
(ii) The radius of the circumscribed circle of \(\Delta ABC = \bbox[10px, border: 2px solid red]{(2)}\).
(iii) The radius of the inscribed circle of \(\Delta ABC = \dfrac {\bbox[10px, border: 2px solid red]{(3)} \sqrt{\bbox[10px, border: 2px solid red]{(4)}} - \sqrt{\bbox[10px, border: 2px solid red]{(5)}}}{\bbox[10px, border: 2px solid red]{(6)}} \).
(iv) \(DH = \dfrac {\sqrt{\bbox[10px, border: 2px solid red]{(7)}} - \sqrt{\bbox[10px, border: 2px solid red]{(8)}}}{\bbox[10px, border: 2px solid red]{(9)}} \)
(v) \(\cos DAH = \dfrac {\sqrt{\bbox[10px, border: 2px solid red]{(10)}} + \sqrt{\bbox[10px, border: 2px solid red]{(11)}}}{\bbox[10px, border: 2px solid red]{(12)}}\), \((10) > (11)\)
III. PART 3
QUESTION 01
On the plane \(xy\), there are two straight lines (1) and (2), two parabolas (3) and (4) and a circle (5) as shown in a lower figure. Choose the correct equation from (1) to (10) to satisfy each graph and fill in the blank with the number.

(1) \(x + 3y + 6 = 0\)
(2) \(4x - y - 4 = 0\)
(3) \(x^2 + 4x + y^2 + 4y + 4 = 0\)
(4) \(5x^2 - 30y + 8x + 60 = 0\)
(5) \(x - 3y + 6 = 0\)
(6) \(x^2 + y + 4x + 4 = 0\)
(7) \(x^2 - 4x + y^2 - 4y + 4 = 0\)
(8) \(5x^2 - 30y - 8x - 60 = 0\)
(9) \(2x - y - 4 = 0\)
(10) \(x^2 + y - 4x - 4 = 0\)
(11) \(x^2 - 4x - y^2 - 4y + 4 = 0\)
(12) \(x - 3y - 6 = 0\)
(13) \(5x^2 - 30y - 8x + 60 = 0\)
(14) \(2x + y + 4 = 0\)
(15) \(x^2 + y - 4x+ 4 = 0\)