Bentuk eksponen dapat disederhanakan dengan menggunakan aturan eksponen di bawah ini:
| Aturan | Contoh |
|---|---|
| \(\large x^a \:.\: x^b = x^{a + b}\) |
\(\large x^5 \:.\: x^2 = x^{5 + 2} = x^7\)
|
| \(\large \dfrac{x^a}{x^b} = x^{a - b}\) |
\(\large \dfrac {x^5}{x^2} = x^{5 - 2} = x^3\)
|
| \(\large (x^a)^b = x^{a \:.\: b}\) |
\(\large \left(x^5\right)^2 = x^{5 \:.\: 2} = x^{10}\)
|
| \(\large x^a \:.\: y^a = (x \:.\: y)^a\) |
\(\large x^3 \:.\: y^3 = (x \:.\: y)^3\)
|
| \(\large \dfrac {x^a}{y^a} = \left(\dfrac xy \right)^a \) |
\(\large \dfrac {x^3}{y^3} = \left(\dfrac xy \right)^3 \)
|
| \(\large x^{-a} = \dfrac {1}{x^a}\) |
\(\large x^{-5} = \dfrac {1}{x^5}\)
|
| \(\large \left (\dfrac xy \right)^{-a} = \left (\dfrac yx \right)^a\) |
\(\large \left (\dfrac xy \right)^{-3} = \left (\dfrac yx \right)^3\)
|
| \(\large x^{\frac ab} = \sqrt [b] {x^a}\) |
\(\large x^{\frac 12} = \sqrt {x}\)
\(\large x^{\frac 25} = \sqrt [5] {x^2}\)
|