Complex Number

COMPLEX NUMBER

 

A. CARTESIAN AND POLAR FORM
Cartesian Form Polar Form
Complex Number \(z = x + y \: i\)

\(x = r \cos \theta\)

\(y = r \sin \theta\)

\(z = r \:.\: (\cos \theta + i \sin \theta) = r \:.\: cis \: \theta\)

\(\theta = \text{arg } z\)

\(\tan \theta = \dfrac yx\), where \(-\pi < \theta < \pi\)

Conjugate \(\overline z = x - y i\)

\(z \overline z = x^2 + y^2\)

\(\overline z = r \:.\: (\cos \theta - i \sin \theta)\)

\(z \overline z = r^2\)

\(z^{-1} = \dfrac 1z\) \(z_1 \:.\: z_2 = r_1 \:.\: r_2 \:.\: cis \: (\theta_1 + \theta_2)\)

\(\dfrac {z_1}{z_2} = \dfrac{r_1}{r_2} \:.\: cis \: (\theta_1 - \theta_2)\)

B. EXPONENTIAL FORM

\(z = r \: e^{i \: \theta}\)

\(z_1 \:.\: z_2 = r_1 \:.\: r_2 \: e^{i \: (\theta_1 + \theta_2)}\)

C. DE MOIVRE'S THEOREM

\(z = r \:.\: (\cos \theta + i \sin \theta)\)

\(z^n= r^n \:.\: (\cos n \theta + i \sin n \theta)\)

\(z^{-n}= r^{-n} \:.\: (\cos n \theta - i \sin n \theta)\)

\(z^{\frac 1n}= r^{\frac 1n} \:.\: \left[\cos \left(\dfrac {\theta + 2 \pi k}{n} \right) + i \sin \left(\dfrac {\theta + 2 \pi k}{n} \right) \right]\)

D. GEOMETRY OF COMPLEX NUMBER