Fungsi Trigonometri

FUNGSI TRIGONOMETRI

 

A. GRAFIK FUNGSI TRIGONOMETRI
Grafik Keterangan
\(y = \sin x, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 1\)

\(y_{\text{min}} = -1\)

\(y = 2 \sin x, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva diperbesar 2 kali dalam arah Y

Periode = \(360^\text{o}\)

Amplitudo = 2

\(y_{\text{max}} = 2\)

\(y_{\text{min}} = -2\)

\(y = \sin 2x, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva diperkecil \(\dfrac 12\) kali dalam arah X

Periode = \(\dfrac {360^{\text{o}}}{2} = 180^{\text{o}}\)

Amplitudo = 1

\(y_{\text{max}} = 1\)

\(y_{\text{min}} = -1\)

\(y = \sin x + 1, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 1 unit ke atas

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 2\)

\(y_{\text{min}} = 0\)

\(y = \sin x - 1, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 1 unit ke bawah

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 0\)

\(y_{\text{min}} = -2\)

\(y = \sin (x - 45^\text{o}) , \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 45º ke kanan

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 1\)

\(y_{\text{min}} = -1\)

\(y = \sin (x + 45^\text{o}) , \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 45º ke kiri

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 1\)

\(y_{\text{min}} = -1\)

 

Grafik Keterangan
\(y = \cos x, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 1\)

\(y_{\text{min}} = -1\)

\(y = 2 \cos x, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva diperbesar 2 kali dalam arah Y

Periode = \(360^\text{o}\)

Amplitudo = 2

\(y_{\text{max}} = 2\)

\(y_{\text{min}} = -2\)

\(y = \cos 2x, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva diperkecil \(\dfrac 12\) kali dalam arah X

Periode = \(\dfrac {360^{\text{o}}}{2} = 180^{\text{o}}\)

Amplitudo = 1

\(y_{\text{max}} = 1\)

\(y_{\text{min}} = -1\)

\(y = \cos x + 1, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 1 unit ke atas

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 2\)

\(y_{\text{min}} = 0\)

\(y = \cos x - 1, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 1 unit ke bawah

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 0\)

\(y_{\text{min}} = -2\)

\(y = \cos (x - 45^\text{o}) , \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 45º ke kanan

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 1\)

\(y_{\text{min}} = -1\)

\(y = \cos (x + 45^\text{o}) , \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 45º ke kiri

Periode = \(360^\text{o}\)

Amplitudo = 1

\(y_{\text{max}} = 1\)

\(y_{\text{min}} = -1\)

 

Grafik Keterangan
\(y = \tan x, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Periode = \(180^\text{o}\)

Pada x = 45º, y = 1

 

\(y = 2 \tan x, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Periode = \(180^\text{o}\)

Pada x = 45º, y = 2

\(y = \tan 2x, \quad 0^\text{o} \leq x \leq 180^\text{o}\)

Rendered by QuickLaTeX.com

Periode = \(\dfrac {180^{\text{o}}}{2} = 90^{\text{o}}\)

Pada x = 22.5º, y = 1

\(y = \tan x + 1, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 1 unit ke atas

Periode = \(180^\text{o}\)

Pada x = 45º, y = 2

 

\(y = \tan x - 1, \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 1 unit ke bawah

Periode = \(180^\text{o}\)

Pada x = 45º, y = 0

\(y = \tan (x - 45), \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 45º ke kanan

Periode = \(180^\text{o}\)

Pada x = 90º, y = 1

\(y = \tan (x + 45), \quad 0^\text{o} \leq x \leq 360^\text{o}\)

Rendered by QuickLaTeX.com

Kurva bergeser 45º ke kiri

Periode = \(180^\text{o}\)

Pada x = 0º, y = 1

B. PERSAMAAN TRIGONOMETRI

\(\sin x = \sin \alpha\)

Sinus bernilai positif pada kuadran 1 dan 2, maka solusi persamaan terletak pada kuadran 1 dan 2

Solusi 1

\(x = \alpha + k \:.\: 2 \pi\)

Solusi 2

\(x = (\pi - \alpha) + k \:.\: 2 \pi\)


\(\cos x = \cos \alpha \)

Cosinus bernilai positif pada kuadran 1 dan 4, maka solusi persamaan pada kuadran 1 dan 4

Solusi 1

\(x = \alpha + k \:.\: 2 \pi\)

Solusi 2

\(x = - \alpha + k \:.\: 2 \pi\)


\(\tan x = \tan \alpha\)

Tangen bernilai positif pada kuadran 1 dan 3, maka solusi persamaan pada kuadran 1 dan 3, namun dapat disederhanakan menjadi kuadran 1 saja karena bentuk yang berulang

 

\(\tan x = \tan \alpha\)

\(x = \alpha + k \:.\: \pi\)


k adalah konstanta ..., −3, −2, −1, 0, 1, 2, 3, ...

C. PERTIDAKSAMAAN TRIGONOMETRI

Bentuk pertidaksamaan trigonometri diselesaikan sama seperti persamaan trigonometri untuk menentukan pembuat nol fungsi. Kemudian dilakukan uji titik untuk menentukan tanda positif atau negatif (lihat Latihan Soal).