Irisan Kerucut

IRISAN KERUCUT

Terdapat 4 jenis irisan kerucut:

1. Parabola (e = 1)

2. Lingkaran (e = 1)

3. Elips (e < 1)

4. Hiperbola (e > 1)

Parabola dan lingkaran dibahas pada bab terpisah. Pada bab ini, khusus untuk membahas elips dan hiperbola.

 

 

A. ELIPS

SUMBU MAYOR PADA ARAH X

Pusat (0,0) Pusat (h,k)

Rendered by QuickLaTeX.com

\(\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1\), dimana \(a > b\)

Pusat: \((0,0)\)

Vertices: \((\pm a,0), (0, \pm b)\)

Fokus: \((\pm c,0)\)

Direktriks: \(x = \pm \dfrac ae\)

\(e = \dfrac ca\)

\(c^2 = a^2 - b^2\)

 

\(\dfrac{(x-h)^2}{a^2} + \dfrac{(y-k)^2}{b^2} = 1\), dimana \(a > b\)

Pusat: \((h,k)\)

Vertices: \((h \pm a,k), (h, k \pm b)\)

Fokus: \((h \pm c,k)\)

Direktriks: \(x = h \pm \dfrac ae\)

\(e = \dfrac ca\)

\(c^2 = a^2 - b^2\)

 

 

 

SUMBU MAYOR PADA ARAH Y

Pusat (0,0) Pusat (h,k)

Rendered by QuickLaTeX.com

\(\dfrac{x^2}{b^2} + \dfrac{y^2}{a^2} = 1\), dimana \(a > b\)

Pusat: \((0,0)\)

Vertices: \((0,\pm a), (\pm b,0)\)

Fokus: \((0, \pm c)\)

Direktriks: \(y = \pm \dfrac ae\)

\(e = \dfrac ca\)

\(c^2 = a^2 - b^2\)

 

\(\dfrac{(x-h)^2}{b^2} + \dfrac{(y-k)^2}{a^2} = 1\), dimana \(a > b\)

Pusat: \((h,k)\)

Vertices: \((h,k \pm a), (h \pm b,k)\)

Fokus: \((h,k \pm c)\)

Direktriks: \(y = k \pm \dfrac ae\)

\(e = \dfrac ca\)

\(c^2 = a^2 - b^2\)

 

B. HIPERBOLA

SUMBU MAYOR PADA ARAH X

Pusat (0,0) Pusat (h,k)

Rendered by QuickLaTeX.com

\(\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1\)

Pusat: \((0,0)\)

Vertices: \((\pm a,0)\)

Fokus: \((\pm c,0)\)

Direktriks: \(x = \pm \dfrac ae\)

Asimtot: \(y = \pm \dfrac ba x\)

\(e = \dfrac ca\)

\(c^2 = a^2 + b^2\)

 

\(\dfrac{(x-h)^2}{a^2} - \dfrac{(y-k)^2}{b^2} = 1\)

Pusat: \((h,k)\)

Vertices: \((h \pm a,k)\)

Fokus: \((h \pm c,k)\)

Direktriks: \(x = h \pm \dfrac ae\)

Asimtot: \(y - k = \pm \dfrac ba (x - h)\)

\(e = \dfrac ca\)

\(c^2 = a^2 + b^2\)

 

 

 

SUMBU MAYOR PADA ARAH Y

Pusat (0,0) Pusat (h,k)

Rendered by QuickLaTeX.com

\(\dfrac{y^2}{a^2} - \dfrac{x^2}{b^2} = 1\)

Pusat: \((0,0)\)

Vertices: \((0,\pm a)\)

Fokus: \((0,\pm c) \)

Direktriks: \(y = \pm \dfrac ae\)

Asimtot: \(y = \pm \dfrac ab x\)

\(c^2 = a^2 - b^2\)

\(e = \dfrac ca\)

\(\dfrac{(y-k)^2}{a^2} - \dfrac{(x-h)^2}{b^2} = 1\)

Pusat: \((h,k)\)

Vertices: \((h,k \pm a)\)

Fokus: \((h,k \pm c) \)

Direktriks: \(y = k \pm \dfrac ae\)

Asimtot: \(y - k = \pm \dfrac ab (x - h)\)

\(c^2 = a^2 - b^2\)

\(e = \dfrac ca\)