Listrik Arus Bolak Balik

LISTRIK ARUS BOLAK BALIK

 

A. NILAI EFEKTIF
Tegangan Arus
Nilai Sesaat \(V = V_{\text{max}} \:.\: \sin \omega t\) \(I = I_{\text{max}} \:.\: \sin \omega t\)
Nilai Efektif \(V_{\text{eff}} = \dfrac {V_{\text{max}}}{\sqrt{2}}\) \(I_{\text{eff}} = \dfrac {I_{\text{max}}}{\sqrt{2}}\)
Nilai Rata-rata \(V_{\text{rata-rata}} = \dfrac {2 \:.\: V_{\text{max}}}{\pi}\) \(I_{\text{rata-rata}} = \dfrac {2 \:.\: I_{\text{max}}}{\pi}\)
B. RESISTOR, INDUKTOR DAN KAPASITOR
Resistor

Rendered by QuickLaTeX.com

 

\(V = I \:.\: R\)

\(V\) dan \(I\) sefase.

\(V = V_{\text{max}} \sin \omega t\)

\(I = I_{\text{max}} \sin \omega t\)

Rendered by QuickLaTeX.com

 

 

Induktor

Rendered by QuickLaTeX.com

 

\(V = I \:.\: X_L\)

\(X_L = \omega \:.\: L\)

\(V\) mendahului \(I\).

\(V = V_{\text{max}} \sin \omega t\)

\(I = I_{\text{max}} \sin (\omega t - 90)\)

Rendered by QuickLaTeX.com

 

\(V = V_{\text{max}} \sin (\omega t + 90)\)

\(I = I_{\text{max}} \sin \omega t\)

Rendered by QuickLaTeX.com

 

 

Kapasitor

Rendered by QuickLaTeX.com

 

\(V = I \:.\: X_C\)

\(X_L = \dfrac {1}{\omega \:.\: C}\)

\(I\) mendahului \(V\).

\(V = V_{\text{max}} \sin \omega t\)

\(I = I_{\text{max}} \sin (\omega t + 90)\)

Rendered by QuickLaTeX.com

 

\(V = V_{\text{max}} \sin (\omega t - 90)\)

\(I = I_{\text{max}} \sin \omega t\)

Rendered by QuickLaTeX.com

C. RANGKAIAN RLC

 

Rendered by QuickLaTeX.com

 

Impedansi

\(Z = \sqrt{R^2 + (X_L - X_C)^2}\)

Tegangan dan kuat arus

\(V = I \:.\: Z\)

\(V_R = I \:.\: R\)

\(V_L = I \:.\: X_L\)

\(V_C = I \:.\: X_C\)

\(V = \sqrt{V_R^2 + (V_L - V_C)^2}\)

Beda fase tegangan dan arus

\(\tan \theta = \dfrac {X_L - X_C}{R}\)

\(\tan \theta = \dfrac {V_L - V_C}{V_R}\)

 

 

Daya

\(P_{\text{eff}} = V_{\text{eff}} \:.\: I_{\text{eff}} \:.\: \cos \theta\)

\(P_{\text{eff}} = I_{\text{eff}}^2 \:.\: R\)

 

Faktor daya

\(\cos \theta = \dfrac {R}{Z} = \dfrac {V_R}{V}\)

 

 

Resonansi

Resonansi terjadi saat reaktansi induktif \(X_L\) sama besar dengan reaktansi kapasitif \(X_C\).

\(X_L = X_C\)

 

Frekuensi resonansi

\begin{equation*} \begin{split} X_L & = X_C \\\\ \omega \:.\: L & = \frac {1}{\omega \:.\: C} \\\\ \omega^2 & = \frac {1}{LC} \\\\ \omega & = \sqrt{\frac {1}{LC}} \\\\ 2 \pi \:.\: f & = \frac {1}{\sqrt{LC}} \\\\ f & = \frac {1}{2 \pi \sqrt{LC}} \end{split} \end{equation*}

 

Saat terjadi resonansi, nilai impedanzi \(Z\) mencapai minimum dan kuat arus \(I\) mencapai maksimum.