Sistem Persamaan Linear s

LATIHAN SOAL

SOAL 01

Tentukan penyelesaian dari sistem persamaan di bawah ini dengan metode substitusi:

 

\begin{equation*} \begin{split} \begin{array}{lll} 2x + y & = 5 \quad & \dotso & (1) \\\\ 4x + 3y & = 13 \quad & \dotso & (2) \end{array} \end{split} \end{equation*}

 


SOAL 02

\begin{equation*} \begin{split} \begin{array}{lll} & xy = 12 \quad & \dotso & (1) \\\\ & 3x - \dfrac {8}{y} = 7 \quad & \dotso & (2) \end{array} \end{split} \end{equation*}

 


SOAL 03

Tentukan penyelesaian dari sistem persamaan di bawah ini dengan metode eliminasi:

 

\begin{equation*} \begin{split} \begin{array}{lll} x+ y & = 8 \quad & \dotso & (1) \\\\ x - 2y & = 5 \quad & \dotso & (2) \end{array} \end{split} \end{equation*}

 


SOAL 04

\begin{equation*} \begin{split} \begin{array}{lll} \dfrac{x}{2} - \dfrac{y}{3} & = 6 \quad & \dotso & (1) \\\\ \dfrac{x}{4} + \dfrac{y}{2} & = -1 \quad & \dotso & (2) \end{array} \end{split} \end{equation*}

 


SOAL 05

\begin{equation*} \begin{split} \begin{array}{lll} 0,5x - 0,6 y & = -2 \quad & \dotso & (1) \\\\ 1,5x - 0,8 y & = 7 \quad & \dotso & (2) \end{array} \end{split} \end{equation*}

 


SOAL 06

\begin{equation*} \begin{split} \begin{array}{lll} \dfrac{4}{x} + \dfrac{1}{y} & = -\dfrac{7}{3} \quad & \dotso & (1) \\\\ -\dfrac{2}{x} + \dfrac{6}{y} & = -1 \quad & \dotso & (2) \end{array} \end{split} \end{equation*}

 


SOAL 07

\begin{equation*} \begin{split} \begin{array}{lll} \dfrac{40}{x + y} + \dfrac{2}{x - y} & = 5 \quad & \dotso & (1) \\\\ \dfrac{25}{x + y} - \dfrac{3}{x - y} & = 1 \quad & \dotso & (2) \end{array} \end{split} \end{equation*}

 


SOAL 08

\begin{equation*} \begin{split} \begin{array}{lll} 2 \:.\: 3^x - 3^{y - 1} & = 3 \quad & \dotso & (1) \\\\ - 3^{x + 2} + 3^{y + 2} & = 54 \quad & \dotso & (2) \end{array} \end{split} \end{equation*}

 


SOAL 09

\begin{equation*} \begin{split} \begin{array}{lll} 5x - 3y + 2z & = 3 \quad & \dotso & (1) \\\\ 3x - 4y + 3z & = -3 \quad & \dotso & (2) \\\\ 2x + 3y - 4z & = 9 \quad & \dotso & (3) \end{array} \end{split} \end{equation*}

 


SOAL 10

\begin{equation*} \begin{split} \begin{array}{lll} x - \dfrac 12 y - \dfrac 14 z & = 1 \quad & \dotso & (1) \\\\ \dfrac 13 x - \dfrac 23 y + \dfrac 12 z & = -1 \quad & \dotso & (2) \\\\ - \dfrac 12 x + \dfrac 14 y - \dfrac 13 z & = \dfrac 43 \quad & \dotso & (3) \end{array} \end{split} \end{equation*}

 


SOAL 11

\begin{equation*} \begin{split} \begin{array}{lll} \dfrac 4x + \dfrac 2y + \dfrac 3z & = 6 \quad & \dotso & (1) \\\\ \dfrac 4x + \dfrac 4y + \dfrac 3z & = 7 \quad & \dotso & (2) \\\\ -\dfrac 6x + \dfrac 2y - \dfrac 9z & = -8 \quad & \dotso & (3) \end{array} \end{split} \end{equation*}

 


SOAL 12

\begin{equation*} \begin{split} \begin{array}{lll} 2yz - xz + xy & = 2xyz \quad & \dotso & (1) \\\\ 6yz + 3xz - 2xy & = 0 \quad & \dotso & (2) \\\\ 5yz - xz + 3xy & = 7xyz \quad & \dotso & (3) \end{array} \end{split} \end{equation*}

 


SOAL 13

\begin{equation*} \begin{split} \begin{array}{lll} (x - 5)(y + 2) & = 3 \quad & \dotso & (1) \\\\ (y + 2)(z + 7) & = 4 \quad & \dotso & (2) \\\\ (z + 7)(x - 5) & = 12 \quad & \dotso & (3) \end{array} \end{split} \end{equation*}

 


Before

Next