Soal 01
SIMAK UI 2009 Matematika Dasar 911
Nilai-nilai x yang memenuhi \(^2 \log x - ^{\frac 1x} \log \dfrac 12 \geq 2\) adalah ...
(A) \(\dfrac 12 \leq x \leq 1\)
(B) \(1 \leq x \leq 2\)
(C) \(1 < x \leq 1\)
(D) \(\dfrac 12 \leq x \leq 1\) atau \(x > 2\)
(E) \(\dfrac 12 \leq x < 1\) atau \(x \geq 2\)
Soal 02
SIMAK UI 2009 Matematika Dasar 911
\(^3 \log x + 2 \:.\: ^9 \log y = 3\) dan \(^3 \log \left(\dfrac {x - y}{2} \right) = 0\), maka \(x + y = \dotso\)
(1) \(2\sqrt{7}\)
(2) \(-4\sqrt{7}\)
(3) \(-2\sqrt{7}\)
(4) \(4\sqrt{7}\)
Soal 03
SIMAK UI 2014 Matematika IPA 301
Himpunan penyelesain pertidaksamaan \(\log |x + 1| \geq \log 3 + \log |2x - 1|\) adalah ...
(A) \(\left\{x \in R \:| \: \dfrac 27 \leq x \leq \dfrac 45, x \neq \dfrac 12 \right\}\)
(B) \(\left\{x \in R \:| \: \dfrac 12 \leq x \leq \dfrac 45 \right\}\)
(C) \(\left\{x \in R \:| \: \dfrac 27 \leq x \leq \dfrac 45 \right\}\)
(D) \(\left\{x \in R \:| \: x \leq -1 \text{ atau } x > \dfrac 12 \right\}\)
(E) \(\left\{x \in R \:| \: x \leq -\dfrac 45, x \neq \dfrac 12 \right\}\)
Soal 04
SIMAK UI 2018 Matematika Dasar 631
Jika \(^7 \log \left(^3 \log \left(^2 \log x \right) \right) = 0\), nilai \(2x + \: ^4 \log x^2\) adalah ...
(A) 10
(B) 12
(C) 19
(D) 21
(E) 24
Soal 05
SIMAK UI 2019 Matematika Dasar 521
Jika \(x_1\) dan \(x_2\) memenuhi \(^4 \log x - \: ^x \log 16 = \dfrac 76 - \: ^x \log 8\), nilai \(x_ 1 \:.\: x_2\) adalah ...
(A) \(\sqrt [3] {2}\)
(B) \(\sqrt {3}\)
(C) \(2 \sqrt [3] {2}\)
(D) \(2 \sqrt {3}\)
(E) \(4 \sqrt [3] {2}\)