Persamaan Logaritma

Fungsi yang sama

\(^a \log f(x) = \: ^b \log f(x) \)

\(f(x) = 1 \) atau \(a = b\)


Contoh

\(^2 \log (x^2 - x + 1) = \: ^5 \log (x^2 - x + 1)\)

 

\begin{equation*} \begin{split} & x^2 - x + 1 = 1 \\\\ & x^2 - x = 0 \\\\ & x \:.\: (x - 1) = 0\\\\ & \bbox[5px, border: 2px solid magenta] {x = 0 \text{ atau } x = 1} \end{split} \end{equation*}

HP = {0, 1}

Basis yang sama

\(^a \log f(x) = \: ^a \log g(x) \)

\(\cancel {^a \log} f(x) = \: \cancel {^a \log} g(x) \)

\(f(x) = g(x) \)

 

Syarat basis

\(a > 0\) dan \(a \neq 1\)

Syarat terdefinisi

\(f(x_1) > 0\) dan \(g(x_1) > 0\)


Contoh

\(^3 \log(x - 4) = 1\)

 

\begin{equation*} \begin{split} & ^3 \log(x - 4) = 1 \\\\ & \cancel {^3 \log} (x - 4) = \cancel {^3 \log} 3 \\\\ & x - 4 = 3 \\\\ & \bbox[5px, border: 2px solid magenta] {x = 7} \end{split} \end{equation*}

Syarat terdefinisi

\begin{equation*} x - 4 = 7 - 4 \: {\color {blue} > 0 \quad \text{ OK!}} \end{equation*}

HP = {7}

Bentuk Yang Dapat Difaktorkan

\(A(^a \log x)^2 + B(^a \log x) + C = 0 \)


Contoh

\(^3 \log^2 x - \: ^3 \log x = 0\)

 

SOAL LATIHAN

--- Buka halaman ini ---

(Next Lesson) Pertidaksamaan logaritma