Metode Substitusi

Penyelesaian integral dengan metode substitusi U dilakukan dengan cara memisalkan bentuk aljabar sehingga menjadi bentuk yang lebih sederhana.

Kita lihat beberapa contoh di bawah ini.

 

Contoh 01

(2x10)3dx

 

Misalkan:

u=2x10

dudx=2du=2dxdx=du2

(2x10)3dxu3du212u3du12.14.u4+c18u4+c18(2x10)4+c


Contoh 02

(2x+5).(x2+5x)6dx

 

Misalkan:

u=x2+5x

dudx=2x+5du=(2x+5)dxdx=du(2x+5)

(2x+5).(x2+5x)6dx(2x+5).u6du(2x+5)(2x+5).u6du(2x+5)u6du16+1.u6+1+c17u7+c17(x2+5x)7+c

Penyelesaian integral dengan metode substitusi langsung dilakukan dengan cara mengubah bentuk dx.

Kita lihat beberapa contoh di bawah ini.

 

Contoh 03

13+12xdx

 

(3+12x) akan dijadikan sebagai variabel

 

13+12xdx13+12xd(3+12x)12(3+12x) sebagai variabelturunan dari (3+12x)213+12xd(3+12x)2ln(3+12x)+cln(3+12x)2+c


Contoh 04

18.(3x2)5dx

 

(3x2) akan dijadikan sebagai variabel

 

18.(3x2)5dx186.(3x2)5d(3x2)3(3x2) sebagai variabelturunan dari (3x2)6.(3x2)5d(3x2)6.16.(3x2)6+c(3x2)6+c


Contoh 05

dx(4x1)3

 

(4x1) akan dijadikan sebagai variabel

 

dx(4x1)31(4x1)3d(4x1)4(4x1) sebagai variabelturunan dari (4x1)14(4x1)3d(4x1)14.13+1.(4x1)3+1+c14.12.(4x1)2+c18.1(4x1)2+c18(4x1)2+c

SOAL LATIHAN

--- Khusus Member ---

Bentuk dasar (Prev Lesson)
(Next Lesson) Integral tertentu